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RN ABSTRACT

BAIIC CONCEPTS OF RADAR POLARIMETRY
AND ITS APPLICATIONS TO
TARGET DISCRIMINATION, CLASSIFICATION, IMAGING AND IDENTIF{CATION

Wolfgang~Martin Boerrer
Electromagnetic Imaging Division, Communicatlions Laboratory
College of Engineering, The University of illinois at Chicago
P.0. Box 4348, 851 S. Morgan St., 1141~SE0, Chicago., IL. 60680

A

In meticulous detail, a succinct summary of hasic eleciromagretic wave
polarization descriptors, of the various scatterer polarization transformation
matrices, and its Invariants of the associated optimal matrix polarizatlons,
and of zhe scatterer descriptive operators is introduced. It !s then shown
how the five (5) frdependent matrix paramete:r for the relative phase moro-static
scattering matrix gescribing an isolated, et regionally discributed, target
in a reciprocal prepagution medium can begrecovered from (1) amplituda~only,
(11) mixed amplitude pius partial phasz, (i11) complete twc-step aripllitude-
phase measurements ., Basic properties of the radar target ucatturing matrix for
1inear (H, V) and ci{rcular (R, L) polarization basis are described in terms of
seometrical target fentures as functions of the specular poirs surface coordirate
Farameters, inown s gaussian principal, main and related curvature functions,
Based upon this succinct background trntroduction on radar palarimetry, the
concepts are applied mainly fur the coherent case to vdarious classes of ircreas-
ing order of sophisticatlion, as defined In detail In the INTRODUCTION, o the
problem of radar target handlirg for the non-ccoperative, limited-datu case.,

KEYWORDS: Polarization, radar polarimetry, target discrimination. classification,
Tmaging, optimal polarization nulls, polarization transformation matrix,
Mueller matrix, radar scattering matrix, polarizaticn fork,

PREAMBLE: In the pursuit of this research on radar target ruzcognftion/handling
within tha m-to-mm wavelength region we are dealing with wide interdisciplinary
research areas for which not all studies carried out in thz past are available

In the open literature. |In seeking for a unified approach of treating this
complex problem, it can happen that one may overliook some impcrtant base studies;
and, therefore, the paper presented hete is a revised, highly updated version

of earlier similar papers., Specifically, we owe our apologias to Dr. Glendon
McCormick, Mr. Archibald Hendry and Mr. Laverne E, Allan, Flectromagnetics Div-
Ision, NRC, Ottawa, Canada, for not having paid due attention to their outstanding
contributions to polarimeti-ic radar meteorology. The malor relevant contributions
of their research are now included ir this paper,

I, INTRODUCTION ‘

The interaction of electromagnetic waves with a geometrically bounded,
material body may best be described as a

""Polarization-Seniit've Scatterer Feature Spatial asnd Temporal
Resonance Pheriorenon't,

This research was supported under NAY-AIR Systems Command Tontract
No.: N00019-80-C-0621,.
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particularly when the spatial and temporal periods become of the order of a target
characteristic features and motional dimensions. Specifically, for the limited
h data, non-cooperative target case, there exists an hierarchy in complexity, amount,
' quality and accuracy of radar data required to obtain an "immediate (instantaneous)
decision operatom" in tactical (seeker) radar for the distinct radar problems of:
. Target versus clutter discrimination: Various methods |
may be applicable, yet we found that in a hostile clutter '

. and/or chaff environment such as (i) the marine boundary i
layer, (ii) the atmospheric ground-based battle-fisld scene, ;
or (iij) for low-flying tactical aircraft involved in suppert
of ground/se®s-based battle actions, we must incorporate
complete CW polarimetric targast/clutter scattering matrix in-
formation. Specifically, we reguive co utilize the dynamic
polarimotri: fork properties. Whereas, for distributed
clutter/chaff, the vector scatteriry centers are distributed
, , more densely and separatrd by a smali fraction of a wavelength,
. resulting in a more stale notion of the associated co-polarization

amulls (prongs of rolarization furk) on tn® Poincave sphere;

those of isolaced lavger, more complex (man-made) objects

are separated by distancss being compurable to the wavelength

and larger, resulting in a rapid circular path loci motion

on the polazrization sphere,, Therefore, the highly varied

behavior of thu dynamic polarization fork motions of

target (rapid) versus clutter/chaff (slow) on the polari-

zation spheie will provide an indispensible target versus

clutter/cnaff discrimination operator as was demonstrated

without further doubt by Poelman (1977 to 1982). We note

that ve also wil/ need to reassess the merit factor definitions

of optimal target signal versus clutter-plus.rioise separution

which need to re based on Huynen's N-target theories

(Fuynen, 1978} ard Poelman's (1981) maximuwu entropy approach

for extractirg the most useful stochastic merit factor

parametric diasrams based on Kennaugh's optimal target

polarizatioca rull theory.
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. Target-versus-target ~nd clutter.versus-clutter classification:
Because of the fact .hat the vectonr scattering centers of larger,
more cowplex isolated targecs are separated by longer electric
lengths yesultirg in a rapid civeular path motion of the
pelarization fork, in geveral, over the entire Poincare sphere
in case of "nut-symmetrical" reciprocal targets, we find that
a moncchromacic CW, limited ospect, complete polarimetric approach
for the backscatter (munwstatic) radar case will not suffice;
ang, in audition, we 7equire polarimetric target downrange silhouette
re.solution. Although the mean optimal polarization null locations
snd their spread car be obtained for clutter and/or chaff rather
accuratzly if the pularimetric clutter matrix information is

. recovr.red within time frames lying below the clutter vector
scattering center reshuffling time ; improved clutter classifi-
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.cation (surface versus inhomogeneous volumetric underburden scatter
can only result from broadband complete polarimetric clutter
information (Fung and Eom, 1982; Morgan and Weisbrod, 19872;
McCormick and Hendry, 1982; Boerner and Huynen, 1982).

We re-emphasize that, given complete broadband polarimetric
scatter matrix information, target classification for the
non-cooperative target versus target, target versus clutter,
and clutter versus clutter case is guaranteed (Root, 1980,
Banks, 1981).

Target imaging in inhemogeneocus media and/or clutter environments:
In case the target does not possess rotational symmetry but

is of general '"mot-symmetrical’ reciprocal shape, in addition

to complete polarimetvric downrange linear chirp maps along the
rotational axis of invariance, we will iequire such data over a
wide cone of the unit sphere of directions in dependence of

data completeriess, quality, etc. or, additional "‘equivalent a
priori" target shape information. In case the target is embedded
in weekly diffracting clutter, the G.O. superlimited parallelbeam
methods of projection tomography do not suffice; then we must,

at least, incorporate back-propagation tomographic methods based
on the Born/Rytov approximation to apply, which represent

4 dramatic improvement ‘over Radon's single ray (straight or

bent) projection reconstruction theory. Furthermore, as we

are strictly dealing with an electromagnetic vector inverse
problem, the scalar back-propagation tomographic method must

be extended to vector back-diffraction tomography for the

general case of a target embedded in the type of clutter
described above. For the application of general vector back-
diffraction tomograpihy to target imaging in dense depolarizing
clutter, we also must develop direct scattering theories in-
corporating a polarimetric vector radiation transfer approach
utilizing a Stokes' vector formulation which implicitly must
also contain multi-scatter phase information.

Target identification: Complete single target identification
in shape and material decomposition will strictly require
solutions to all of the above three (3) tasks, plus incorpor-
ation of cemplete doppler and scatterometric information within
the various windows of the m-to-sub-mm wavelength region.
Therefore, we need to develop complete nolarimetric broadband
(discrete linear chirp) doppler radar sysicms within the
various windows of the 1-400 GHz e.m. spectral region so that
optimal target information can be extracted from electro-
magnetic wave/target interaction which is a "polarization-
'sensitive target feature spatial and temporal resonance
phenomenon"”, i.e., amplitude, phase polarization, freguency,
dopaler information, all are equivalently and equally imjortant

B




Criteria for the Assessment of Available Complete Polarimetric
Measurement Methods:

The main obstacle towards realizing incorporation of complete
polarimetric radar target theory into target versus clutter
discrimination, targzt versus target classification, target in
clutter imaging, single target identification until recently
was the underdeveloped state of broadband pularimetric antenna
theory and design. It was not possible to revover for the
general not-symmetrical reciprocal target case (which must be
the basic requirement here), i.e., both amplitude and velative
polarization phase of the scattering matrix elements at time
frames below the vector scattering center reshuffling time of
clutter/chaff. Until very recently, complete eliipsometric
amplitude-only measurement principles had to be used which
require nine (9) rather time-consuming independent amplitude-
only measurements for a selected set of linear, circular and
elliptical base polarizatiows. For the complete symmetric

(H, V, aligned) target case, Copeland (1960) and Huynen (1960)
independently developed polarization rotation-sweep techniques,
which were shown to be sufficient to recover the optimal
polarization nulls of aligned, symmetric targets only on the
polarization sphere from co-polarized amplitude-only measure-
‘ments. In a next step, a method of recovering the co/cross-
polarization phase ¢AB or ¢BA for SAA/SAB or SBB/SBA

measurements was developed using fast magnetic waveguide
switches and/or pin-diode switches. This method, when re-designed
for the circular left/right polarization base vector pair

does provide a two-step complete measurement approach, as e.g.,
was developed by McCormick/Allan/Hendry (1977-1982) for polari-
metric radar meteorology, for which target reciprucity must
apply as well as complete target symmetry with respect to the
linear H, V polarization basis which certainly is a rather
unrealistic assumption for the case of tactical target detection
in meteorological clutter. More recently with the advanced
pin-diode switching technology, it is now possible to recover
complete polarimetric scattering matrix information for the
general 'not-symmetrical' reciprocal target case within the
time frames which lie below the reshuffling time of vector
clutter scattering centers, i.e., we are now witnessing the
realistic phase of incorporating complete radar polarimetric
concepts into the general radar target description problem.

IR @ i ke e e
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In the‘following sections, a survey of the important concepts of radar polari-
metry is presented and relevant examples are provided.
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2. POLARIZATION DESCRIPTORS

In this brief survey of optimal polarization descriptors, we will
schematically introduce basic definitions (Table 1), describing the polar-
) ization ellipse in time and frequency domain (Fig. l) and its relationship
‘ with the Poincare sphere.

TABLE 1: POLAR’"ATION DESCRIPTORS

3 PARAMETER DEFINITION

a. Radar Cross Sectlion

. i) no polarization corrections o= l!m Lnr LETL- - lim LIR llLJ—- (1)

INE
i r . Si2
1) with polarization cor- g = 1im 4R A E-l (2)
fons rt T2
rect ' R0 ‘ _h_ '
: b. The Polarizaticn Vector ()
E . . \3
i 1) time domain h(t) = a, cos wt h, + a, cos (wt+s) h
! L H T v
| where & = év - 6H
i1) frequency domaln h(t) = Re{h e®}, where (4)
. - J6 A JG ~
| h a,e H hH + aye th
: cosd ~sind cosT .
: 11i) geometric psra- h=a ]ed® (5 :
) meter ' sing cosé/\ jsint ‘
i :
‘ iv) polarization . . a, .
ratio h = a eJGH(h + ph,), where p = Y i (e)
{ - H H v ay Lo
- c. The Polarization Eilipse h, \?> [h, \2 h, Yh o
. | ). Y (LR Y . T . I cos = sin2$§ o,

Linear: § = 0, horizontal (a/, = 0),
vertical (a, =0), linear 45° (a, = av) (7 Lo

Left clrcular (LC): & = 90° , ay = ay
(H) : Right circular (RC): & = 90°, a
Left elliptic: sind > 0O
Right elliptic: sin§ < 0

H - 3y




Table | (Cont'd): Polarization Descriptors

d. The Stokes Vector

g, /I hy|? + Ihvl7\ a2 + 3,2 a? [
} 9 LMEEENTMES a2 - a’ a? cos2tcos2¢ Q
.9_ - i o~ . - = ) - (8)
% 9, _2Re{hHhv } ZaHavcosd ac cos2tsin2¢ U
\93 -21m{h h, *} 2aa, sins a sin2t \ v
where
2 0 a2 2 2 w12 =2 2 2
g‘o g' + 92 + g3 1 Qe + Us + V
1 ] ] 1
. - ] . - _l u 0 = o
H: g 0o/, V: g 0], LC: g 0/, RC: g 0
0 0 i =1
Modified Stokes Vector g = (1 +Q), & (1 ~0Q), U, V}
e. The Polarization Ratio
h a
p = hv = { V) el - t:an*fe']6 (9)

H \"’H
Lirear: Im{p}= 0, H: p =0, Vi p =

Circular: Re{p} =0, LC: p = J, RC: p = -]
Elliptic: Left elliptic: Im{p} >0, right elliptic: Im{p} <0




TABLE 1 (Cont'd): Polarization Descriptors

f. The Poincare Sphere

i) Cartesian Coordinates = (g‘, 9y 93)
ii) Spherical = (go, %— - 2t , 24)

{ii) In tems of Polarization ratio

u = .]__-—lg, 6 = ccs -1 -l-glﬁ-——!-&’ ¢ = phase (U) (]0)

1+ Jp fuf2+ 1

! Fige 2 POINCARE SPHERE

) - — o

3. SCATTERING MATRICES: [S], M1, [P]

There exist three matrices of specific value to the description of hydrometeor
ensembles in the coherent and the incoherent cases which are defined here and the
Interactlons are derived (Boerner, et al, 1981, Chan, 1981),

3.1 The Scattering Matrix [S}

The 2 x 2 complex scattering matrix [S] 1s relating the polarizatior,yvector
of the scattered field h”to the corresponding one of the incident field h' through
the relation

hS=[sih’ | ()

"Different representations for [S] with absolute and relative phase in the Sistatic

and monostatic cases are summarized as follows: in the bistatic case, the scat-
tering matrix with absolute phase is defined by




S T L o e e -

8
: jé Jé
San Sap !sAAle AA |sAB|e AB
[S]c = = .
SHA A J9 je
Sea 3ap |Sgale” BA |Sggle’ BB
» ) S \
lsAA|eJ(¢AA - tpg) 1Sl 1

Isgaled P ™ 4ag) |Sgglci(tgg = ¢5g)

- al?
%A [S1gyn s

where ¢ is the absolute phase¥, [S]SMR is the target scattering matrix with
relative phase and it can be written”in the bistatic case as

15,4/ ¢ (0pn %8 |5 g

(sl - -
SR lsBAleJ(¢BA a8

! -
Eas. (12), (14) satisfy the reciprocity condition sAB'SBA(lSABl ‘SBAI’ ®aB ¢BA)
In the monostatic case. In this paper, we 2~= considering the monostatic
case only.
3.2 The Mueller Matrices

The Mueller (Stokes refiection matrix [M], the modified Mueller matrix [M 1,
and the symmetrized Mueller matrix [M_] are presented in this section. The
reconstruction of these matrices from“the scattering matrix elements is given in
Table 2. (Boerner et al, 1981, Jan & Sept.)

The 4 x 4 real Mieller matrix [M] relates the scattered Stokes vector 3?
to the corresponding inclident vector g with the following relationship

S =g, AT

where the Stokes vector Is defined in lable 1. A similar relationship relating
the modified scattered and incident Stokes vectors is given by

©=mMlg . S (5)

The relationship between [M] and [M ] is given by (Boerner et al, 1981), also by
Gerrard & Burch et al, (1975). m

M1 = [R] [M] [R7] (16)

and -1
M1 =R (M1 (R] (17)

*We note that this specific choice need not be the best one as e.g., in the
case of a circular polarization basis (zlso see Huynen, !970).

Y ’ :
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where the constant transformation matrix [R] becomes

(R] = (18)

O DO NN
OO&LN‘
O—=00
—_O 0O

The Mueller matrices are 4 x 4 real and asymmetric, The symmetric Mueller
mateix [Ms} can be deduced as follows: the received power (Huynen,1970;
Kennaugh, 1949-54 #9) is

P.= & [9) ar*aja| +9; 95 -9393] =[UWg g , (19

where g?, gr are the scattered wave and receiving antanna Stokes vectors
respectively and [Q] is5 a constant matrix and is given by:

1 00 0
01 0 0
Q=% 50 1 o
0 0 C -l

substituting (16} Into (19, then
o=l g - g =g - g, (20)
where [Ms] = [Q][M] !s a symmetric Mueller matrix.

3.3 Graves Power Scattering Matrix [P] and its Assoclated [PH] and [Pv]

P

The total backscattered power from a target is ¢iven by (Graves, 1956)

P -D_S*' h‘.‘\ - (!ls*)r 115 , ‘(2])

b

Yhe;e g? Is the backscattered polarization vector., Sthstituting (il) into
(21

p,= DT ST st = D™ e (22)

where the matrix [P]is known as Graves Power scattering matrix and it is
given by '

a c
[P] = (s [s] = < ) , ' (23)

ck b
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where a, b are teal and ¢ ls compiex. The reconstruction of the eiements of
[°] in terms of the elerents oF th= scattering matrix [S] is glven in

Table 2 (Chan, 1981).

The matrix [P] canle decomgised Into two measursbie matrices [PH] and
[PV], where

Pl = 1p, + [P (24)

The elements of [PH] and [Pv] in terms of the eluments of [S] are also shown
in Table 2 (Chan, 1981).

YABLE 2: RECONSTRUCTION OF [M1, [Mm], (r1, [PH}, {Pv]
KND OPTIMAL POLARIZATION FROM (s?

M) M)
- 2, ols 12 2 A PT
myy = HSul 2|5 pp! 2+ 15591 Ay = 18l
- - ] 2 . ~ 2 " 2 -
mp = myy = HUS, |5gg! %} Mg = 1Spgl? = My
myy = gy = ReISpuSaE * Spaptaf) Myz = RelSpaSa8) = ¥y

Ly = iy = 13,885 + 5ag3gh) My = Im (S50 = 3,

- 3[5 012 - 205pgl? + 15gpl™F | M2 ™ |5gel?

= - % - * - ™
my, = RelS;,5a8 = SpSeh? Myg = RelSpSgpl « 3 |

Myy ™ ~My, = |M{SAASA§ - SABSBE} My ™ lm{5A858§} " -iMuz

w s %) ! Le - 3 2
My3 Re{S, Spf} *+ 135 Maq Re{s S8t * |5Aal
My = M3z * Myy My My ™ Mgy = My

——
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TABLE 2: (Cont'd)

[P] = [P] + [P,] CO-POL & X-POL NULLS
- 2 - 2 .
a = {Spuul2 *+ ISyl COLATITUDE: 6 = cos”! (dul®-1
¢ ¢ 2 2 jul® +1
[P]= caph b |sHv| + Syl
© = Syl Suv * Sui Swy LONGITUDE: ¢ = tan ':‘z
. | 1 - ip
- ’1 . -
. . a, = Syl where: u s
[P] HH b = 's |2 .
H » By = 1Sy and p = B BT
¢t b
i Py ey ™ Syl Suy 24
- i 2 -
ay ’suvl CO-POL Nulis
a, ¢ 2 Am=S
Pif v) by = Isyyl B
ck b‘/ ey Bm25,., CmS$
YO/ oy = sl suy AB’ AA
A= SggSaf * SaASas ™ "
b= 15l - [ppl?
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L.,  THE CONCEP OF THE OPTIMAL POLARIZATION PAIRS

It was first shown bv Kennaugh (1952) that there ex/st two pairs of
optimal polarizations which can be useful [n describing target properties at
one aspett and at one frequency (Kennaugh, i949-1952 #9). The concept is based
on invariance of pclarization state transformation under consideration of
reciprocity as we will Introduce next.

h.l Paiarizaticn State Transformation

In the following we shall 1imi¢t curselves sxclusively to the monostatic
case (9 = 98,, ¢_= §,) and we may define the ''normalized monostatic scat-
tering fatrix S Sith 1olatlve phase'' in terms of two arbitrary elljptically
orthogonzl polari stion base vectors hA and hB so that with h = hAhA + hBhB

S | San San Sap ™ Sga
h" = 5th', [s] = . (25)
Sea Sps ‘a8 " %ga |

.
[P,
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Thus, assuming reciprocity of the propagation path (S g =" ) and conser-
vation of energy, we require five real quantities to éetenn ne [S] completely
(Kennaugh, 1949-1952 #1, #4). However, we note that In case SAB b Spa i.e.,
reciprocity of the propagation paths is violated, the definition of = (25)
cannot be used (Kanareykin et al, 1966) as may be ercountered for a propa-
gaticn path within a highly ionized cloud containing variou. dense liquid

and solid ice states of hydrometeors (Jeske, 1976).

R

Assuming reciprocity holds, there exists an infinite number of general
pairs of orthonormal elliptical polar.zation vectors hA’ h, and an
infinite number of possible invariant transformations (Kennalgh, 1949-1952
#12). Numerically, the transformation properties of S(A,B) assuming no
polarization losses from any cne orthonormsl polarization pair h=h hy +
hy, h, to another orthonormal pair h = 'hA‘ + h, ,h,, can be expressed in
tzrmg of the geometric parameters t and ¢, or po§ar?zatlon ratio parameters
vy and &, mathematically expressed in matrix form

cos¢ -sing cosT jsint
(7] = (26)
sing cos¢ Jsint  cost
which imrlies rotation of coordinate axes and deformation of ellipticiLy ot
the polarization ellipse. [T] may also be defined according to Maffett (Crispin,
and Siegei, 1968)
‘ eVlcouy ejwzslny
[T] = (27)

- J“':*sln-f ejw“cosy

and In order for [T] to be unitary, the following condition on ¢'s has to be

imposed Y2- y1 = ¥,- y3,where in our work, we chose y; = Yy, = 0. Thus, having

Vo= ~y3 = § £ 71, the [T] matrix reduces to

cosy -ejaslny

(] = -}6 , (28)
e ” siny cosy

The two transformations [(26) and (28)] are equivalent, and can be represented
on the Poincare sphere as shown In Fig. 3.

U PR U

Fig. 3
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Equation (28) can also be expressed in terms of polarization ratlo p = tanyejs
and after normalizing [T] it takes on the following form

] -p®
[(T] = (l+op*)* ( ° ). ’ , (29)
p I

The transformed elements cf the scattering matrix (s'(A*,8')] = [T]T [S(A,B)]
[T] are given for the general bistatic case by

S

-1
(14pp%) " [Spp+ 0255g+0(Sp5+55,)]
(l+op*)"'[-p*sAA + Sgg *+ S

'AOAI
S

't R ™
-1
S'piar m (1400%) ToA2 S0+ Spp ppk(S, + Sp,)]

S (|+99*)-‘[9*2 SAA + ABB - p*(SAB + SBA)] ’

'
B'B'

satisfying the transformation Invarliants det{[S'(A',B')]} = invariant when
det {[T]} =t 1, otherwise det {[S'(A',B')]} is different by a factor of
exp{2ARS {det[T]}) and

Span{[S(A,B)]} = [Syu[2 + |5pg]2 + |55, 12 + 5002 p
- Spdn{[S'(A',B')]] - lslA‘A'IZ + ls'A'S'Iz + |S.B'A'I2 + lSlB’B'lZ
= invariant. l (31)

We note that !f SA 'SBA’ then S'A| . -S‘B. , for all p; t.e., If reciprocity is
satisfied for any gne palr of orthggonal polarizations, it Is satisfied for all
such pairs. Furthermore, we must emphasize the important property that for
any one given aspect and for one frequency, the transformation is polarization
invarlant, l.e., the transformation occurs on one and the same polarization
sphere of radius p = span {[S(A,B)]}* Thus, if [S(A,B)] Is known and
reciprocity as well as corservation of energy Is satisfied, [S'(A',B')] for
any other orthcgonal palr hﬂA‘,B') can be obtained as is known for example

for the transformation from linear to circular polarization base vectors In
Long (1975). 11 case of polarization losses properties of the ~cherency
matrix need to be used (Kraus, 1966), and the transformation w,11 not occur

on the sane polarization sphere (Deschamps, 1953; Deschamps and Mast, 1973 ).

4.2 Transformation from Linear (H,V) to Circular (R,L) Polarization Bases

Based on equation (28) we can construct a transformation from a 1inear

to a circular polarization base; The parameters in equation (28) are
set to the following values

Yy =7/4 and § = 3n/2

*We note that Huynen (1970) chose target maximum power m to represent the
radius.

}




The resulting transformation matrix [T] is 14

L Vo
[ = /2 PR (32)

The relationship between the unit vectors (h

h ) of the linear basls and
(h h ) in the circular basis can now be erQte

~ -~

h
) - [’['] (33)

T >

h v

Equation (33) holds in the Incident system, its counterpart In the scattered
system !s
he '-hH

|- e [
hL th

the two systems are illustrated In Fig. &,

’
; '\l‘l'v:d;nnulu Kave

attered syrtam

l'ﬁl tmnlu
ra.
""m Wil

V J:}l
Lf—-.s

o0 | gamy
o

FIGURE 4: INCIDENT AND SCATTERED FIELD COORDINATES
It can be shown that the scattering matrix in the circular basis [C(R,L)] is
[C(R,L)] = [T(RL, WV)] [S(HV)] [T(RL, W)]T (34)
Substituting equations (32) into equation (34) we obtain the scattering matrix

in the circular polarization basis In terms of elements of its counterpart in
the linear baslis.
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k.3 Calculation of the Optimal Polarizations

It was shown by Kennaugh (1949-1952) th . there =xist two pairs of
optimal polarizations, the Co-Polarization Null Palr €for which $',,., und
S'oips In (27) vanish and the Cross-Polarization Null Pair for which S'avp
ans S' ,a, Vanish, In Table 2, the optimal polarization (CO-POL ard
X-roL) Ru*ls are given in terms of [S] elements and a’s represented Jn the
Poincare spheres.

It should be noted that the CO-POL and X-POL nwlls lie on one major
circle on the Poincare polarization sphere and ths. their locations define
the polarization fork (Fig. 5). The X~POL nulls iro anti-podal on this
sphere and the line joining them bisects the ang & between the CO-POL
nulls as shown In Fig. 5. We note here that this unique description of a
scatterer under monostatic conditions given for one frequency and aspect Is
of paramount importance ‘o target description at one aspect and one freguen-
cy and its proportids have been overlooked in practice (Kennaugh, 1949-1952;
Kanareykin, et al, 1966).

POELMAN'S
ADJUSTABLE
POLAR| ZATI10V
FORK

Fig. 5: The Polarizacion Fork (Huynen 1970)

b.4 Reconstruction of ) P

The reconstruction of [S from [M], [M P P,] and [P,] or optimal
polarizations Is shown In Tab%ins. This %eagsm*éb‘el’z[aﬁ% 3 giéévg comp?ete
interrelationship between these scattering matrices as well as the optimal
polarizations. From a measurement point of view, this |s yery important
because i: suffices to measure one of the matrices or the optimal polarization
to calculate the other matrices, The reconstruction of [S] from the A
optimal polarizations is of great importance to target pola§¥§atlon synthesis.
in these Tables, A and B are any twe uithogonal bases e,g, horizontal and
vertical. We note here that in the Incoherent or quasi-coherent case, cluster-
ing properties of the CO-POL niills need to be taken into consideration,
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TABLE 3: RECONSTRUCTION OF [S]gye from [M], (M 1, [P ], [P,] and
- OPTTMAL POLARIZAT IONS
4
: el;ments of from [M] from ["NJ f rom [PA] and [Pv]
( ]SMR (A=H, B=V)
EW Emy "+ 72my, +my ) | My Ya,
- e -
Sagl = 1Sgal | 7ATmy, = mp,) Mg B ag
sgg! Almyy = 2m, = my, | My, B
¢ ¢ -] zmlh * ®y -1 ) % tan" ! hﬂjﬁi
A - *aB tan | {e———} tan 3'4 /M et
(NIB + m23 14 13 A
Paq = ¢ my, - m Im C
88 " as -1 ™y T ™y -1 2 i 1 B
tan e s tan M, . /M tan
My Mg 42/ "32 Re Cg

from optimal polarizations

[$(A,8)] = K[; j

CO-POL Nulls are known:

oV o+ 8501 + 20af0l 2 217

Cco_Cco

X w-20."p, expl{-Jé}, ¢ = phase(o?°* o;°>

y ==2 exp {'.’¢E}

co co
z =lpy” * 0y

One CO-POL and one X-POL are known: . ;

K = ;—7—P 5, D= Zl(px)* (pco)z + px'z +lpCO|2{]pCO - pCOIDXlz_ szIZ} J
+ |20 % -|0%12 4 1)2 |

x = [0 p%[p¥|2 - 20 ]exp(~Jog), o= phase () (6592 + p%
y = =[20%°(")" - [0%|2+ 1]exp(-30)

z = ()52 + p¥|
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4.5 Optimal Polarizations for Different Isolated Simple Target Shapes

shapes.

The CO-POL and X-POL nulls are calculated here for different target

Table 4 shows the calculated nulls for simple shapes, e.g. ideally

conducting flat plate or sphere, metal'ic trough, right and left metallic
hel ices.

TABLE 4: CO-POL AND X-POL NULL FOR SIMPLE TARGET SHAPES
SCATTERING [S] AND CO-POL (C) AND X-POL (X
TARGET MODIFIED MUELLER [M ] NULLS ON POINCAKE

MATRICES

SPHERE

Metallic helix
(left screw)

1 0 0 O
- mi=]0 1 00
a. |ldeally conducting flat m 0o 0 1 0
plate or sphere 0 0 0 |
0
[S] = ¢
0 -1
1 0 0 O
01 0 O
Mul= o 0-1 o
b, Metallic trough 0 0 0 -1
% o=+ (5 3)
1 \
D
w L1 o
N R
Mal=¥{ 0 0 0 o
c. Metallic helix 2-2 0-2
(right screw)
4 . U
-4 ()
N |
|
N |
| 11 0 -
ICRE 11 0=
pm 0 0 00
d. 2 2 0 -2
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5. FREQUEWCY-DEPEMDENT RELATIONSHIP OF POLARIMETRIC SCATTERING MATRIX
ELEMENTS WITH SPECULAR POINT CURVATURE

The time-domain first order polarization-dependent correction to the
physical optics impulse response has been given by Bennett et al (1973, 1977
and 1981) as

> Ky dA

K ~ ~
> u -
'BHs(pOI) (r, t) = T [au Hai ~ &y Byl 3

where a , a_ are unlt vectors along the directions of the principal
curvatubes ¥t the specular point; H ., H . are the components of the inci-~
dent field in the directions of a ,"'a ,v;espectlvely; K, K are the
principal curvatures at the specu?ar pdint; and A is thesi1Houette area
of the scatterer as delineated by the incident Impulsive plane wavefront
moving at half the free space velocity.

An expression for the far scattered impulse response field was found
in [Bennett et al, (1973) and (1977)]

] Got) = & A 2
o 's(p0) ‘" r  dt Hy

which is the Kennaugh-Cosgriff formula, (Kennaugh & Cosgriff, 1958; Kennaugh
& Moffati, 1965). The corrected total fleld is thus

-+ -~ - - & . -~
rHe (r, t) roHs(pO)(r’ t) + rn-"s(pOl) (r, t)

which is transformed to the frequency doniain, and is directly related to
the scattering matrix which exhibits total polarization/depolarization
effects (Chaudhuri et al, 1982). Ignoring scale factors, the matrix
elements are given by

K - K
S f'%? (JK)2 Ap(k) = (JK)  Ap(k) ——Y— cos 2a

K - K
Sy = 37 (02 AR(K) + (JK) Ap(k) ——Y cos 2a (35)

K =K
Sip = (JK) Ap(k) == sin 2a

where k is the wave number, Ag(k) is the Fourier transform of A(t), the
polarization angle a is defined in Figure 6a.. The validity of (35) requires
high frequency interrogation with smooth, convex, conducting targets. (Fig. €b)

S22
1+ R 11
information can he extracted from it at high *requencles. A relationship

between the phase factors of the scattering matrix elements and the principal
curvatures is then established. (Chaudhuri et al, 1982

A complex function 1-R (where R =

) 1s defined, and curvature i

K- K
u v .k $4d
2 Tos 20 YN T (36)

where ¢, = ¢22 - ¢11.
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Fig. 6b P Specular Point
{ncidence for Equatorial
Specular Point
b) Complex Plot of D (experimental-

d)
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FIGURE 7: BEHAVIOR OF D AT HIGH FREQUENCIES (Fou, 1982)
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The cross-pol nulls are also found to be along the directions of principal
curvatures. These directions can be recovered from the scattering matrix
elements (Chaudhuri et al, 1982),

The curvature recovery model is based on the flrst order correction to
the Physical Optics approximation, Hligher order corrections are investigated
by directly extending the space-time integral equation approach of Bennett et al,
(1977). The second order correction current is found to be very insignificant
when compared to the first order one (Chaudhuri et al, 1982) and (Foo, 1982).

The phase-curvatuire relationship (36) is tested by applying it to
theoretical, as well as, experimental backscattering data obtained for a pro-
late spheroidal scatterer, as shown In Figures 6 to 8. Both sets of data
support the relationship well. Figure 8a is a diract verification gf (36)
with theoretical data; Figure 8b depicts that the quantity ) jpn {l:ﬁ} converges

K 1+$
pa

to u"Kv as kb lncreagjs; Figure 8¢c Is a plot of the Imaglinary versus

the rZal part of k l:§ , and shows that, as predicted from theory, It

converges to (or hov gRaround) a polint on the Imaginary axis as frequency
increases. The distance of this point on the Imaginary axis from the origin
equals the required value Ka-K o 0.375 for the specular point of Interest,

Figures 8a-8c refer to the bgoadside incidence to a 2:1 prolate spheroid in
Figure 6b with ¢ = 90°, For useful preseritation of results from experimental
data, the complex plot, such as that In Figure 8¢, Is found to be most
Interpretative (Chaudhuri et al, 1982) and (Foo, 1982). Figures 8d-8f are

the experimental versions of Figures 8a, b and c. Deviations from the
theoretical predictions are mainly attributed to the k factor and the tangent
function in (36), and the relative phase error between the TE and TM incidences,
all of which become more significart at higher frequencies (Chaudhuri et ai,
1982) and (Foo, 1982).

While the phase difference of llke~polarized .erms, however small, contains
curvature information, the phase sum, regardiess of the type of orthogonal
polarization bases, tends to a value which is twice the argument of the Fourler
transform of the silhouette area of the target (Foo, 1982), 1.e.,

$11 + $22 + 2 Arg Ap(k) (37)

The phase sum also tends to the argument of the scattering ratio defined as
the ratio of the determinant to the span of the scattering matrix

2
b < $11522 - 512 (38)
Is)112 + [5,,12 + 2|s,,|?
$19 T ¥gp ¥ Arg D (39)

The magnitude of the scattering ratio, whose definition is immaterial
of whether linear, circuiar or general elliptic polarization is used, ap-
prcaches 0.5 rapidly as frequency is increased, i.e.

{o| + 0.5 (40)
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The magnitude of the ratlo Is Interpreted as the ratio of the maximum

radar cross section to the trace of the power scattering matrix [P] at high
frequencies, 1.e.,

Umax ’

where “max is the optimum radar cross section defined in Kennaugh (1949-1954),
Sinclair (1948), as

O‘rt- 'b-!‘ . [S] 1‘"tlz

In the above, it is assumed that identical transmitting and receiving antennas
are used; ht and hr are the antenna heights, and are normalized to unity;
[P] is the Graves power scattering matrix defined In Graves (1956), as

1 = [s1°T s

The complex plots of the scattering ratio provide a simple check on
the accuracy of high frequency polarimetric measurements (Foo, 1982). The
complex plot and the amplitude p'ot of the ratio are depicted in Figures 7a
and 7c, respectively, for theoretical data. In Figures 7y and 74, the

respective plots for measurement data are provided which demonstrates the
usefulness of Introducing Fq. (38)

Another curvature recovery equation has been derived (Foo, 1982) in
circular polarization basis vector notatlon

K - K, \?2 Con C
(u *) = e (£2)
2 c
LR
where the C's denote the elements of the circular polarization scattering
matrix. It is to be noted that the quantity lCRR]TCLLl - [CNI2 (Morgan
and Weisbrod 1982) can be interpreted as, T

which reveals area information for a smooth, convex, conducting target at
high frequencies (Foo 1982).

The curvature recovery model is proven to satisfy the image reconstruction
identities of invariant transformation (Foo 1982). It is found that the

determinant of the scattering matrix is strictly transformation-invariant |if
(Foo 1982)

Det [T] = %1

where [T] is the unitary transformation matrix, whereas, the invariance cf
the span of the scattering matrix necessitates no restriction (Foo 1982), i

- -y
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JJ2Arg(Det [T]) (44)

Det [C] Det [S]

and

Span [C] = Span [S] (45)

where [C] ‘can be extended to the scattering matrix resulting from trans-
forming (S] to the geneial eiliptic polarization.

Finally, the values of kb (Chaudhurl et al, 1982) have been found to
be most potentfally suitable for curvature recovery of the 6' x 12 prolate
spherold (and probably targets of similar size and shape), prcvided that
polarimetric measurements can be improved to & better accuracy. Not only
is this range of kb valid for the first order correction to physical optics,
but it is alsc a compromise range between the high frequency condition
required by the curviature recovery model and the drawback to lower frequencies
required to prevent critical magnificution of measurement errors (Chaudhuri
et al, 1982)

6. MEASUREMENTS OF [M], ([P], and [S]

The measurements of the scattering matrices [S], [P], and [M] are intri-
cate, and various methods exist which have been summarized recently by
Chan, 1981. Of particular interest here is the measurement of [S] and,
specifically, the retrieval of TothlamTlltudeldndlpha?e o{ all of the rele~
vant elements of [Sleuns 1., |Sanls |Spnis |S =g |, ¢,.,
assuming that ¢,, = 8MR = ), Sinéé thlsag;ief egt?od&cgeon *éés ngg allow
a compiete treatment, we refer to the above report and point Gut only that
it s necessary to recover the relative phasa between the two co-polarized
components in addition tc the relative phase betweaen the co-/cross-polarized
components, as wel: as the amplitudes of [SAAI, |SBB|, |S4pls which requires
isolatlion of at least 25 to 30 dB between co~ and cross-pb?arized channels.

6.1 Amplitude-Only Measurements

When amplitude alone Is measured, cross-section measurements do not
lead to a direct determination of the scattering matrix. But, rather, the
measured data nrovide the coefficients of equations fror which the magnitudes
and  elative phases of the matrix elements are deduced. Hence, only [S]
SMR
c. be derivad frum the measurements,

a) Measurement of [M.]: The Mueller mat:ix [M] of a target at one

‘aspect aigre can be FéaﬁT%i‘obtalned from its associated S as shown

in Table 2. As for the measurement of the average Mueller matrix <[M]> of
a target, a set of nine (9) independent measurements of average power for
various combir-*ions of antenna polarizations are required to obtain <[M]>.
All elements of the symmeiric [M.], as defined in Eq. (20), can be
obtained with the'let of transmitting ahd receiving antenna combinations as
shown in Table 5.

s sk .

e b vt e
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%- TABLE 5: ANTENNA POLARIZATION FOR THE MEASUREMENT OF THE SYMMETRIC [Ms(ﬁij)]
;
Transinission Reception Average received power
w5 omh5® ¥(m, l+r?133+2r-n?3)
¢=135° ¢=135° ¥ (y  #mgq2m, 5)
Horizontal Horizontal %(5‘]+622+25|2)
Vertica) Vertical ¥(my +m,,-2m, )
Left circ. Left cire. #(ﬁl‘+ﬁub+zﬁlh)
Right ecirc. Right cirec. &(ﬁ]‘+ﬁh“-zﬁ'u)
¢wh5® Horizonta! us\,,»fa,z«a,fﬁw)
pmlys5® Left clre. &(a,,+a]3+alh+a39)
Hor izontal Left circ. *(511*511*514*5zu)

Noc:ie that the expressions in the average received power column of Table 6.8

have different siuns from those derived by Kennaugh [2: No. 7]. In Kennaugh's
report, the Stokes vaccog for horizontal pularization is defined as T
9y = 1/Y2 [V -1930] , whereas, here it Is definad as 9y - /Y2 [V 100j.

b) Measurement of [S).,,: The monostatic [S] . |s specified by five (5)
IrdeperdZWt 537 Y ely three (3) unsigned gmplltudes and two (2)
relative phas¢s. In order to determine these five {5) paramete. s, five (5)
independent magnitude-determining measurements have tov be made. In general, {
therefore, seven (7) amplitude measurements are needed to completely determine '
the [S]SMR'

Kennaugh (1949-1954) suggested measurements using the same transmitting 3
and recelving antenna polarizations. Only one of these measurements need be '
other than linear polarization. The measured data are used to locate the CO-POL
nulls of ihe [S) MR ©O" the Poincare sphere. Once the CO-POL nulls have been
determined, the éoBrespondIng ] sMg 3N be completely specified .(Boerner et al,
1981). The combinations of transm?%ting and receiving antenna polarizations
are summarized in Table 6.
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TABLE 6: TRANSMITTING AND RECEIVING ANTENNA POLAR|ZAT IONS
FOR_AMPL1TUDE-ONLY MEASUREMENT

Transmission Reception | Measured Calculated
1 |  Paraneters Parameters
(1) Vertical Vertical |va|
1 Vertical Horizontal ISHV|

I f ISHVl#O in (1), proceed with the following measurement

_ _,4‘_‘

(2) vertical 5O cos (6,y=d,)
1 Vertical Right circular =sin (¢ -d,)
Horizontal Horizontal ISHHI
Horizontal Right circular -sin(¢HH'¢Hv)
Horlzontal pmig0 cos (¢,,"¢ )
|

I |S,, =0, replace (2) by (3)

2) Horizontal Horizontal ISHHI
omb5 ¢mbi5® cos (dyy~dyy)
pmlb50 Right circular Siﬂ(¢vv‘¢HH)

ROSS AND FREENY (1964)

c) Measurement of [P]: The power scattering matrix [P] specifies the
total power backscattered from the target for any transmitting antenna polar-
ization, hence, it can be found by measuring only the total power in the
backscattered return, no phase measurement is necessary. The form of the
power scattering matrix Is PB(HV) is

e T

S0 teabe el




P(RV)] = [S(HV)]T" [S(HV)]

2 2
Isyul2 + syl
x *
Sy Suv * Swv Sw/)
K, K
E §
*
K kq

where k, and k, are real, K is complex,

*
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* *

S + SHV

S HY

S

HH Vv

lsHV|2+ Isvvl2

(46)

[P] can be completely specified by

transm!lklng af horizontal, vertical, ¢ = 45° linear polarization and right-

handed circular polarization and measuring

the total power backscattered,

no phase measurements are necessary (Graves, 1956).

For example, if horizontal polarization is transmitted, i.e.,

1
Kt -

0
*

then, from P, = (h})T [P] gf, we have
k K 1
H 1

P =1 0] =k
b K*

k 0

-

2

(47)

(48)

where the superscript indicates the polarization of the transmitting antenna.

The result Is summarized in Table 7.
obtained using linear polarizations only.
polarizations are required.

It should be noted that [P] cannot be

Rather, linear, as well as, circular

TABLE 7: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [P}
p S,

Transmitting Total backscat- Measured
Polarization tered power Parameters

Hor i i p M k
orizonta b \

v
Vertical Pb k2
=0 45°

¢mU5® Py %(k]+k2)+Re{K}
Right Cirec. prC 3 (k) + K}

[ A VR N
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| d) Measuremert of [PH] and [Pv]: The elements of [PH] and [PV] can he

3 1 determined by power measurements similar to those for obtaining [P]. For

_ the determination of [P,], we transmit horizontal, vertical, ¢ = L45° and right

A l circular, and then receqve with horizontal polarization only, i.e., the power
‘backscattered in the horizontal channel. As for [P,], we receive with

» i horizontal polarization only, i.e., the power backs!attered in the vertical

! ! channel. The results are tabulated in Table 8 and Table 9.

TABLE 8: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [PH]

: Transmitting Backscattered power Measured
? polarization In _horizonta!l channel parameters
f H 2
E Herizontal Poiy - sl
’ | Vertical p Y 1S, 12
bH ‘ HV
0 "‘5 0 - 2 2 [
pmh5 Py FUS 218y 1)+ Relsy s,
Right circ p, RO 5([s 12+ (s, | D)+ Im{s, s, )
9 ‘ bH HH HV HH >HY

TABLE 9: TRANSMITTING ANTEMNA POLARIZATIONS FOR THE MEASUREMENT OF [PV]

Transmitting Backscattered nower Measured

polarization In vertical channel parameters |
H . 2
Horizontal Pov |SHV'
‘ v 2 !
Vertica) Py |svv| ‘
kg0 4s° 2 2 . X

¢mb5 Py ISyl 241y | )4Relsy s, ) i
4
Right circ. p RC $ 50012+ 0 [ 2)+im{se, s, ) §
- bV HV W HV Vv |

6.2 Amplitude and Relative Phase Measurement . |

The technique of measuring amplitude and relative phase has been used
to obtaln scattering matrix data by Kennaugh (1949-1954), Ross and Freeny

(1964), Crispin et al (1961), and Huynen (1965).

: —m e RO -
s ——————- XA i R
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In the following, several more useful methods aée summarized,

6.2A Linear Polarization Basis

The 10 cm CHILL Meteoroiogical Radar Is one such system that has the
capability of measuring both the amplitude and relative phase of the scat-
tering matrix. The CHILL system is a coherent radar which has the ability
to rapidly switch from vertical to horizontal polarization. The polari-
zation switching is acccmplished by use of a switchable ferrite circulation
which Is located behind the parabolic antenna(Mueller, 1981).

Measurement with the ''"fast switch' requires that the switch be transfer-
red after each transmitter pulse. First, a horizontal polarization, and
then a vertical polarization measurement is obtained. Two separate channels
are used to keep the horizontal and vertical measurements separate. It
should be noted that the same logarithmic receiver, sample and hold, and
A/D converter are used for both channels. Thus, any non-linearities of
these analog circuits are reflected in both channels, and will tend to
cancel. The signal processing is achieved with an A/D converter and a
floating point integration. The five (5) most significant bits are separated
from the eight (8) bit digital word and used to represent *! horizontal
power and then the vertical return power are integrated separately In the
fioating point integration.

With additional modification, the dual polarization antenna switching
capability can be enhanced to 334 m sec which will complete recovery of the
polarization phase Information so that the relative phase scattering matrix
[S].M can be measured within less than 4 m sec time frames, which would be
jus% éelow the prejected decorrelation time for hydrometeor investigations.

Similar experiments have been carried out by Ross and Freeny (1964),
and their results are summarized in Table 10,

TABLE 10: TRANSMITTING AND RECEIVING ANTENNA POLARIZATIONS

U N LATIV S N
Transmission ~ Reception Measured Parameters
Vertical |simul- ISVVI
(1) Vertical taneous Py~ Shy
Horizontal|recept- IS,y
ion HV?

I f |SHV[ ¥ 0, proceed with the following measurement

. | Horizontal|simul- A

(2) Horizontal taneous ' O™ Ony
Vertical |recept- 1S,
ion H

Continued
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TABLE 10: (CONTINUED)

rlf [s

HVl w 0, replace (2) by (3)

£\ .
E ‘ i -
q ! i *] Horizontal|simul- ISHH]//;
3 - (3) o= 45° ‘ ' taneous : Sun™ Pyy
- i Vertical |(recept- ISVV|/V?
g ' , ion
[ |

6.2B Circular Polarization Basis

The infcrmation of the backscattered characteristics of a radar target
can be greatly improved if successful suppression of clutter return can be
achieved. Advances In the field of radar polarimetry have clearly shown
the usefulness of knowledge of the complete vector characteristics of the
scattered flields which' led to the development of dual-channel polarization
diversity radar. ‘Such a system Is capable of transmitting arbitrary polar-
ization and receiving the backscattered wave In two channels, one of which
is polarized parallel to the transmitting channel, while the other is
orthogonal to it. The complete scattering matrix can be measured in an
arbitrary polarization basis by alternately switching the transmitting and
receiving channels.

Successful use of this type of system has been documented by such
Investigators as G.C. McCormick and A. Hendry, F.E. Nathanson and .. Poelman.
Their published works are refarenced in the attached bibliography.

4 brief description of the systems used by the above-mentioned investiga-
tors Is given here:

.....

the sams and opposite sense of polarization (circular) to that of a trans-
mitter available at the inputs. The schematic diagram is shown in Figure 15.

Circultry for

o adaptive circular !
polarization (Homodyne !
Modulator = same i
circuitry as Homodyne 5
PR Detector) . 1

FIGURE 15: Nathanson (1975)
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McCormick and Hendry (1975): Realized a system determining certain parameters
of rain clutter using '"the ideal polarization diversity radar" (1975).
See Figure 16.

oA . T
TRSNIMITTER oupLE xR CImeuIr | T o menooe saLarizaTn
) g wt
k! ANTONA
ingR LOCAL L] MIKER |
! 03CILLATON v

DUAL  CHANNEL
LI § U]

OATA ARCORDING
YT

Block diagram of radar apparatus

FIGURE 16: McCormick and Hendry (1979)

Poelman (1981): Introduced another way of suppressing rain clutter In

an X-Band radar faclility for polarization signature studies of targets and
clutter., This system has a dual-polarized gntenna which receives all back-
scattered power of the target in the parallel and orthogonal polurizations
In separate channels.

It can utilize both linear and circular polarization, the latter used
primarily for rain clutter suppression; wherecas, the flrst for target in
clutter discrimination.

ELECTRONIC
STEF_IRING
Poliiaso | "WE AT [ RANSARR-EER)
Il o Block diagram of exlstlnq
o e e | et Ine far potarizatlor
ASSEMBLY g?““ ANALYZER f‘c‘ 1 tty for POlar]zat lon

studies.

FIGURE 17: Poelman (1981)

6.3 Amplitude and Absolute Phase Measurcments

The method of measuring amplitude and absolute phase information can
be used to determine the scattering matrix completely by transmitting only
two (2) linear polarizations and receiving three (3) linear polarizations,
see Table i1,




' TABLE 11: TRANSMITTING AND RECEIVING ANTENNA POLARIZAT{OUNS

FOR AMPLITUDE AND ABSOLUTE PHASE MEASUREMENT
' TRANSMISS | ONS RECEPTIONS MEASURED PARAMETERS
L)
' Vertical Vertical |va|, dyv
‘ Vertical Horizontal ° lSHvl, duy
Horizontal Horizontal |5HH|’ *un
FREENY (1965)
The amplitudes and phases of the elements of the scattering matrix

were measured at ElectroScience Laboratory of Ohio State University (ESL-
0SU). The experiments were conducted (Walton 1982) on a frequency domain
range yielding the backscattered returns va and SHH (SHV and SVH being
zero in this case).

7.  ASPECT-DEPENDENT PROPERTIES OF OPTIMAL POLARIZATION NULL LOCI
MOTION ON THE POLARIZATION SPHERE

7.1 Vector Scattering Center Interaction

Of particular relevance to this electromagnetic target scattering
problem is the interaction of polarization/depolarization sensitive scat-
tering centers on a single closed target of irregular shape, which was
first attacked rigorously by Huynen (196G) in his dissertation. In this
masterpiece, he developed his little understood ''N-target decompesition
theorem'', utilizing canonical properties of the distributec target's Stokes
matrix, which specifically applies to clutter analysis and multiple vector
scattering center irteraction of single targets. This theory is of para-
mount importance to further advancement in radar polarimetry, Althcuth
it still requires extensive extension, it clearly paves the single unigue
method of complete polarimetric description of radar clutter and average
object, an immensely complicated electromagnetic inverse problem. We
are fortunate to have the senior expert In the field, Dr. J. Richard Huynen
(1982), join the efforts of this research task, and in a separate report
entitied, "A revisitation of the phenomenological approaches with appli-
cation to radar target decomposition', he has further developed on his
N-target decomposition theory.

Whereas, in collaboration with Morgan and Weisbrod (Teledyne Micro- ]
netics) to poiarimetric CW radar target characteristics description, we are
following the direction of extracting a complete set of most simple canonical
target shapes (-nch as the sphere, the linear wire target, the n-bounce
corner reflector, the left/right winding helices, the cone-tip/ogival and/or
spherical capped truncated cylinders with and without fins, bumps, protru-
sions, etc. treated in Boerner et al, Jan 15/Sept, 1982), in consultation
with Bennett and Mieras (1982), Sperry Research Center, use of a CW vector
dumbbell scattering center (matrix) interaction was chosen. Both methods
have proven to provide useful results and can be used for interpretation
of the motion of the Huynen polarization fork as function of frequency, .
relative aspect angle (with respect to line Joining the vector scattering
centers) ind the electric separation of both.

e e A
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7.2 Dynamic Polarization Fork Motion

Y Specifically, we observe that for linear (W, V) polarization base

‘ pair anchoring, the cross-polarization null move only whenever the principal
target symmetry axis Is rotated about the line of sight orthogonal to (H, V)3
and that the co-polarization null locations move on a quasi-circular spiral
non-closing paths as function of differential change in aspect angle where,
for small electric separation of vector scattering centers the circles remain
with isolated patches, whereas, for large electric separation on large
circles encircling the total polarization sphere. Furtheremore, the specific
character of the vector scattering center (as e.g. smooth versus cone-tipped)
dictates the relative differential speed with which these loci are transversed
(slow versus rapld) as functions of differential aspect angle. We also note
that for a large ensembie of closely packed vector scattering centers, the
loci of the co-polarization nulls remain within rather small isolated patches

on the polarization sphere which is indicative of clutter-type. Furtheremore,
the specific quasi-circular paths drawn are indicative of clutter motion.

We note that the analytical result was verified experimentally by Poelman
(1980-1982) as explained In Jetail in (Boerner, STiS 1914, Sept. 30, 1981),
and this specific phenomenon of the dynamic fork motion of time frames of
helow the vector scattering center reshuffling time requires further extensive
analytical and experimental studies. In general, the cross-polarization

null location for linear symmetric targets is of slow precession type, and

the rapid quasi-circular path motion of the co-polarization null location is
nutative gyroscopic In nature. We note that this specific dynamic polarization
fork behavior is well described by Huynen's ''single target' description

into five target characteristic parameters (p_, ¥, v, T ,¥) as detailed

in (Huynen, 1982). m m

However, the electromagnetic inverse problem of decomposing a single
radar target into its characteristic polarimetric target vector scattering
centers s very complicated and still not resolved.

7.3 Optimal Polarization Null Characteristics of Buoy-Target Models
Tusing measurement data of TELEDYNE-MICRONETICS, L.A. Morgan and
§. Weisbrod)

In (Boerner et al, Sept., 1981) the optimal target polarization null
concept, introduced briefly in this paper, is applied to experimental
ampl 1tude-plus-phase matrix data measured by Teiedyne-Micronetics for two
specific classes of water submerged buoy targets (six types of dlhedral cor-
ner reflectors and twelve types of cylindrical open-ended pipe sections with .
specific termination). For the purpose of extracting useful target classifi- ,
catlon algorithms and also In order to analyze the aspect-angle dependent i
behavior, the three measured radar cross sections (GHH’ OVV’OVH)’ the

span {[S]}, the det {[S]}; Re {(cRRcLL)/(cRL)Z}, {lcRRHcLLl - |cg 1%}, the ‘
spherical angle spanned by two co-pol nulls, and the co/cross-polarization null
loci are plotted as functions of aspect angle. In Figures 18a and b, the

polarimetric target behavior for a horizontal, truncated open pipe-section
above a sea bed, and a vertical pipe section of the same dimensions in isolation,
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v respectively, is presented, whereas in Figures 19a and b that for a four-

; corner dihedral reflector above a sea-bed and in isolation, respectively.
] Comparing the data obtained for targets above the sea-bed with bthose in
isolation, the expected interference behavior for Figures 18a/19a versus
Figures 18b/19b is apparent and wil' not be firther analyzed in detail, and
we refer to the associated report by i.:. Morgan and S. Weisbrod(1982) for
further relevant interpretations (also see Figure 20).

|
.
|

By analyzing the various plots for the two principal target categories
considered, we are able to verify the fundamental theorems which can be
derived from Huynen's polarization fork concept (Huynen, 1960, 1970, 1978,
1982); the target vector scattering interaction theory (Bennett and Mieras,
1982); the relationship batween relative scatterihg matrix co-polarization
phase and specular point curvature perturbations of Kennaugh's target silhouette
area function(Foo, 1982); and the dynamic behavior of the polarization fork
mot fon(Poelman, 1980~1982). Although, we have considered here the monochromatic
(CW) backscattering case for reciprocal symmetrical targets only, it is evident
that very definite target polarization properties exist which may be utilized as
target characteristics classifiers and identifiers. In the following, we will i
first summarize our observations and then extract most important polarimetric
target classifiers.

Observations

(1) Polarization Fork Behavior: The X-POL nulls are in all cases
antipodal, and the line joining the X~-POL nulls bisects the spherical
angle between the COPOL nulls on the polarization sphere, NOTE this
specific polarization fork behavior represents a very efficnent method
of checking on the accuracy of monostatic scattering matrix data for
the reciprocal target case (i.,e. an Isotropic target embedded in an
isotropic propagation medium) .

(i1) Huynen's Target Characteristlic Angle y: The spherical angle
between the two COPOL :ulls exhibits very distinct target characteristic:
behavior in dependence of strength and separation of the target's most
definite vector scattering centers(We will have to awalt the detailed
analyses of Bennett and Mieras(1982) tc obtain more comprehension of
this aspect of the problem).

(117) Polarization Transformation lnvariants: 1t was clearly established
that the two target polarization transformation invariants, i.e. Det {[S]}
and Span {[S]} do provide constants for whatever measurement nolarization
basis is being used. In addition, these invarifants, which exhibit !
identical aspect dependence, but not frequency dependence(see Section 5;
and in more detall(Foo, 1982)), are contributing parameters towards
establishing useful target characteristic classification algorithms.

(iv) Relative Scattering Matrix Copolarization Phase (¢yy = ¢,,): In
strict compliance with the results presented In(Foo 1982 , the relative
scattering matrix copolarization phase (¢ V) certainly plays a !
dominant role In classifying undulating amooth v rsus rugged edged

surfaces. We note here that the circulan polarization base identities, "
derived in Foo's thesis(Foo, 1982) and investigated, in parts, in the I
associated report by Morgan and Welsbrod(1982), 1.e.{]|cC llCLLl IC \2} |
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f and {Re[(C rC )/(CRL)Z]}, contain rather similar information to

N (opy = ¢ V$' FPom af-examination of the relevant plots in Figures

? ) 18a/b, 19a/b, it is evident that the theories on target curvature
X at the specular point developed in (Foo, 1982) and summerized in
Section 5 do present rather Important target characteristic classi-
fication as well as identification algorithms. For example, the
relevant figures({oyy - dyy}; Re{(C LCRR)/(CRL)Z}) In Figure 18b for
the vertical pipe section amplify the correctness of the formulas
resulting from the theories developed in (Chaudhuri et al, 1982;
Foo, 1982). In (Morgan and Weisbrod, 1982), the relevance of the
quantity {|C lICLL Ca |2}, closely related to Det{[C]}, Is
emphas ized. ?ﬁls pécul iar Expresslon Is shown to be a maximum for
dihedral, minimum for a plate or sphere, and zero for a linear or
helical target. Here we repruduce Figure 5 of (Morgan and Weisbrod,
1982) in Figure 20, which is being explained and interpreted in

FREE SPACE DIHEDRA;.
WATER RANGE UiMEDNA
AT-SEA DIHEORAL

SEA CLUTTER

FREE SPACE MoY:E
250-290°

NATER RANGE BUUYS
245-285°

AT-SEA BUOYS .

BOATS

COLUMN

PROUBABILITY < ORDINATE

3 - 2
Figure 20 Probability Distribution for {|CRR[|CLL| ICRLI }

according to Figure 5 in (Korgan and Weisbrod, 1982).
Reproduced with the permissior of the authors and the
responsible NAV-AIR Contract Officer(J.W. Willis).

detail in their report.

7.4 Recommendations on Pursuing Aspect-Plus-Frequency Dependent Dynamic
Polarization Fork Analyses in terms of Vector Scattering Center Interaction
Models and Huynen's -target Decomposition Theory

There exists one major problem in applying polarimetric techniques derived
from the optimal target polarization tieory to the polarimetric transient time-
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dependent problem of ramp response target cross-sectional area projection

shape reconstruction, because this optimal polarization target null theory

is derived in the frequency only as a mono-frequency theory. Both Kennaugh
(1949-1981) and Huynen (1960, 1970, 1978, 1982) were aware of this complication
in their pioneering and tontinuing research efforts of advancing the state-
of-the-art in radar target polarimetry. What we urgently need is a time-
dependent polarization-senitive target feature descriptive theory which is
still not completely available.

8. CONCLUSIONS

We have demonstrated in our analyses on radar target polarimetry that
broadband radar polarimetry deserves the full attention of Naval Research
Centers invoived In target/clutter hondling in the boundary layer of an
ocean environment.

Specifically, the propagation assessment of electromagnetic waves along
the marine boundary layer in an ocean environment is of justifiable concern
to the Navy and applies to improving techniques of surveililance, communications,
navigation, electronic warfare, and optimum sensor design. Considerable
efforts have been made, primarily at NOSC, NADC, NWC, and NRL, to charactzrize
the marine boundary ltayer using electromagnetic (EM: specifically microwaves
and millimeter waves) and electro-optical (EU: Infrared and visible) remote
probing methods. Utilizing, in parts, the electromagnetic wave interrogation
properties at frequencies from 200 MHz to 100 THz led to the development of
suzh lower atmospheric assessment systems as IREPS (Integrited Refractive
Effects Prediction System), PREOS (Prediction of Performance and Range for
E0 System), and TESS (Tactical Environment Support Systems).

A thorough literature analysis on the available EM/EQ systems shows,
hewwever, that hitherto, no, or extremely little, use of the broadband
polarization vector properties of the electromagnetic wave have been made.
This apparent shortcoming can result in considerable ambiguity of environ-
mental assessment, particularly in the spectral band of 1 GHz to 400 GH.
Therefore, the main objective of this research is to promote the efficient
use of novel polarimetric radar techniques, to improve upon the assessment
performance of existing m~to-mm-wave radar systems, and to develop complete
polarimetric chirp radar systems which allow sub-millisecond acquisition of
the radar scattering matrix and real-time sea clutter and/or target
classification and identification. We emphasize that electromagnetic vector
wave interrogation with material bodies can best be identified as a
polarization-sensitive target feature (spatial and temporal) spectral
frequency resonance phenomenon. Every effort needs to be made to implement
these important polarimetric/scatterometric methods into existing and newly-
to-be-developed vector wave scattering techniques for a more reliable
propagation assessment of electromagnetic waves along the marine boundary
layer in an ocean environment.
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